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Analysis of Guided Modes in
Multilayer/Multiconductor Structures
by the “Boundary Integral—Resonant

Mode Expansion Method”
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Abstract—This paper describes a new method for the analysis
of modes propagating in shielded waveguides consisting of many
diclectric and perfectly conducting layers of different widths.
The eigenvalue problem inherent to the mode determination
is formulated subdividing the structure into layered elemen-
tary wave-guides (EWG’s) and matching the fields generated
in adjacent EWG’s by unknown equivalent sources placed at
the interfaces. The special representation of the EWG field,
consisting of boundary integrals and mode expansions, leads to
a linear matrix eigenvalue problem involving a limited number
of variables. Thanks to this peculiarity the method permits to
determine many modes in short computing times. The method
was implemented in a flexible and fully automatic computer code,

whose reliability and efficiency has been confirmed by many tests. .

I. INTRODUCTION

ITH the development of integrated circuits operating at

microwave, millimeter-wave, and optical frequencies,
a great effort has been devoted to invent more and more
efficient algorithms for the full-wave analysis of multilay-
ered waveguides of ever-increasing complexity. A number of
waveguides of practical interest consist of many dielectric and
conducting layers of different widths enclosed in a rectangular
shield [Fig. 1(a)]. Therefore, a general computer code for the
modal analysis of this class of structures can be very useful.
Reliability and efficiency in multimode analysis are required,
since many modes often propagate in the operating band of
complex waveguides.

Recently many two-dimensional (2-D) time-domain algo-
rithms have been developed for the dispersion analysis of
complex waveguides [1}-{7]. These algorithms loose their
efficiency in multimode analysis, due to the necessity of
considering a very large number of time steps to resolve, in
the frequency domain, modes propagating at close frequencies
with the same phase constant.

Other algorithms, based on the mode-matching, the trans-
verse resonance or the boundary integral method have been
used extensively for studying particular structures belonging
to the considered class and, recently, for implementing some
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Fig. 1. (a) Cross section of a multilayer/multiconductor waveguide. (b)

Subdivision of the cross section into rectangular regions containing an
z-invariant medium.

general purpose codes [8]-[11]. In these methods the disper-
sion analysis requires to recalculate many and many times the
system matrix in order to locate the zeros of its determinant in
the w- plane. In multimode analysis this makes these methods
time-consuming and unsuitable for automatization, since some
human control is necessary to be sure not to miss some modes.

In two recent conference papers [12], [13] we gave a
rough description of a novel method that leads to the mode
determination by the solution of a linear matrix eigenvalue
problem involving a reasonably small number of variables.
This permits a dramatic saving in computing time and removes
the risk of missing modes. The present paper is intended to
describe the method in the necessary detail, including some
improvements which avoid the spurious solutions that, in the
early version, were found at (nominally) zero frequency [12].
Here the method is named “boundary integral-resonant mode
expansion (BI-RME) method,” due to the particular form of
the field representation.

In Section II, we describe the theory and report the formulas
that are strictly necessary for a clear understanding of the
method; in Section III we give some informations on the
numerical implementation and report some result; in Section
IV we discuss the advantages of the method.

II. THEORY

We consider lossless isotropic waveguides [Fig. 1(a)]
bounded by electric walls and, possibly, by one magnetic
wall on one side (considering the magnetic wall is useful
for studying symmetric structures). We restrict our analysis
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Fig. 2. Subdivision of the structure into EWG’s excited by the equivalent
current sheets defined over the interfaces.

to propagating (noncomplex) modes, i.e., to fields depending
on the factor exp j(wt — Bz), with 8> 0. As usual in modal
analysis this factor is understood and the field is studied in
two dimensions.  For any given value of § we determine
the frequencies and the fields for all modes propagating
below some frequency wy,.x. Then, in the eigenvalue problem
inherent to the mode determination, the frequency w plays the
role of the eigenvalue and the modes are determined as 2-D
resonant modes depending on the parameter (.

As shown in Fig. 1(b), the cross section consists of a number
of interconnected rectangular regions, each containing a -
invariant dielectric and bounded by electric walls on the top,
on the bottom and, possibly, on one side. As shown in Fig. 2
we isolate these regions introducing a set of fictitious magnetic
walls, thus subdividing the waveguide into elementary wave-
guides (EWG’s), numbered from one to M. Furthermore,
according to the equivalence theorem, we introduce on the
fictitious magnetic walls some traveling-wave current sheets
propagating in the z-direction with the phase constant 3, in
such a way as to generate, in all the EWG’s, fields propagating
with the same phase constant as the modes we want to
determine. As shown in the figure, the currents densities on
adjacent magnetic walls are opposite, in order to assure the
continuity of the tangential component of the magnetic field
in adjacent EWG’s.

The union of all the fictitious magnetic walls consists
of N separate segments Y7,Ys, -+, Yy (see Fig. 2). These
segments, named “interfaces,” consist of points placed on
magnetic walls of adjacent EWG’s and, possibly, on lateral
boundaries of conductors. The current on the left and the right
of the interface Y,, are denoted by J and —J,, respectively
(note that only J, or —J, is present where the interface
touches a conductor). In any case, one function Jp = J_,;(y),
defined over Y,,, is sufficient to describe all the equivalent
currents on the left and/or on the right of the interface, so that
the set of functions J1, Jg, .. J ~, completely describes all
the equivalent currents in the EWG’s.

The EWG’s are bounded at the top and the bottom by
electric walls and, laterally, by a pair of magnetic walls
or by an electric and a magnetic wall. They all include
a dielectric medium layered in the y-direction only. Then,
the EWG’s are simple enough for representing analytically

the field generated by the equivalent currents. The form of
the eigenvalue problem, that is formulated by enforcing the
continuity of tangential electric field at the interfaces, depends
on the way we represent the EWG field. The boundary integral-
resonant mode expansion (BI-RME) representation discussed
below leads to a linear eigenvalue problem.

A. BI-RME Representation of the EWG Field

Let us consider the mth EWG and assume that it is included
within two interfaces—say Y,, on the left and Y, on the
right—placed at the abscissas z,, and =, [Fig. 3(a)]. Let us
denote by €™ and p™ the electric and magnetic permittivities
of the medium, that are piecewise-constant function of y,
defined in the interval Y™™ spanned by the EWG. Finally, let
us introduce the surface charge densities p,, and p,,/ associated
to J, and J,.. These densities are given by

Vs - I def
T (vyz = Uya "Jﬂuz) (D

The field in the EWG can be represented as follows [12]:

Pn = —

Em = —vV™ — juAm

/m—’l'm al/mé'l/m
2 Pq P‘I Py “pq
Tw Z( /m2 w!m?2 ) (2)
Pq
= V x A™
m _
H™ = e
]w a/mv X € —'Mg, llmv X 6 —;}Igz
+ um w/m2 + wlm?2 (3)
p,q rq prq

where V = 4,0, + #,0, — jfiu,; V™ and A™ are the quasi-
static scalar and vector potentials; wyr, €0 and wy.™, €
arc the frequencies and the electric fields for the LSM,,
and LSE,, modes of the EWG, propagating with the phase
constant f3; a; and a;’;" are the mode amplitudes. Assuming

the normahzatlon [[ €€-é& dz dy = 1, the amplitudes of

both types of modes satisfy the equation

m _jw Sk T
a’pq T E—— (/}/ epq (‘T’n/’ y) : Jn' (y) dy

wm? 2
- /Ym & (Tns9) - July) dy). “)
The potentials are represented by the boundary integrals
V™ (w,y) = /m 9" (@Y, T, Y ) () dy’
- /m 9" (@Y, 20, Y )on(y ) dy' (5
An@) = [ Gy any) ) d

~

- Gm(x7 Y, Tn, yl) ' Jn(y/) dy, (6)
Y’VTL

where g™ and G™ are the Green’s functions for the quasi-
static scalar and vector potentials in the EWG. Equations (2)
and (3) hold true also when the EWG borders on one interface
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Fig. 3. Possible EWG lateral boundaries. (a) Magnetic-magnetic walls. (b)
and (c) Magnetic-electric wall.

only [Fig. 3(b) and (c)] but, in this case, one of the integrals
in (4)—~(6) is missing.

The series in (2) and (3) involve the modes of the EWG
considered with the same phase constant, at different propa-
gating frequencies. In other words, these modes are considered
as transversely resonant modes, their propagating frequencies
having the meaning of resonant frequencies. In this sense
these series represent “resonant mode expansions.” We see
that (2) and (3) constitute a hybrid representation consisting
of boundary integrals (BI) and of resonant mode expansions
(RME). The quasi-static boundary integrals permit an accurate
representation of the field near the interfaces, where the field
varies rapidly due to the discontinuity of the medium and
to the presence of metallic and/or dielectric edges [14]; in
fact the discontinuities and the singularities of the field obey
the same laws in the quasi-static and in the high-frequency
case, so that the rapid variations of the field can be accurately
reproduced provided the currents on the interface are allowed
to vary rapidly. The resonant mode expansions represent a
much smoother field, because the contributions of the highest
order modes become rapidly unimportant (asymptotically,
they depend on the factor (wj)~*). Then, the RME can
be truncated, retaining a limited number of the lowest order
modes, say those satisfying

W W < CWimax )
with ¢ not much larger than one (in Section Il we shall see
that considering ¢ > 2.5 is sufficient). Note that the number of
retained modes is small if the dimensions of the EWG are not
much larger than the wavelength at the frequency (wmax.

The modal electric fields and the Green’s functions have
the form

M’m\I;'m N'mq)m
~m __ _____— ~AIm, — Y4 pq
qu - emw;r; ;n CP(I ﬂ;)n (8)
™=y M @)EH (@) Fy (v, ) ©)
p=0
G _ i MPME*Sp(y,y') | NN R (y,y)
Brzem (y)em(y') B2

(10)

TABLE I
EXPRESSIONS OF V", ﬂp (@), xp' (%)
(X™m =z —anp=0, 1 ; 6op = KRONECKER INDEX)

EWG type
Fig. 3a Fig. 3b Fig. 3¢
24 pr/Wm™ (p+1/2)n/W™
&g \/ cos(uX™) |4/ -Wg-,;;' sin(yr X™) \/ % cos(urX™)
xp u,z,,, sin(vPX™) | A/ “;Zm cos(vt X™) —ﬁ% sin(urX™)
o N
where
My =tyv, Xp (%)0y + g;n(x)(uyﬁm — Jii;B0y)
N,:n =ﬁwﬁxp ( )+ j.vy & (2). an

The symbols o By, & (%), Xy (x) are defined in Table I;

M;n * and N;” * represent the conjugate of M™ and A"
with x,y replaced by z’,4’. The other functions in (8)-(10)
result from the solution of the following equations:

3y (1/€™)B, U™ — (B2 /€™ — pmwip?)UT: =0 (12)
8y (1/ ™)y @y — (B2 /™ = € wip* )PP =0 (13)
By F — BrRemFyt =—8(y —y') (1)
By(1/p™By Ry — (B [u™) Ry =—6(y —y')  (15)
8y(1/€™8, Sy — (By 2 [€™)Sy = —u™ T, (16)
By(1/€™B, Ty — (B2 /™I =—8(y —y') (D)

at the extremes
of Y™

/ pmum? dy =1 / emom? dy = 1.
Ym m

The equations (12) and (13), where w,y and wy:* play the
role of eigenvalues, result from the study of the LSM and LSE
modes by the method of variable separation. For any value of
p, the index ¢ labels the eigensolutions in the nondecreasing
order of the eigenvalues. Equation (14) derives from the
solution of V-eVg = —§(z — z’)6(y — y’) with the Dirichelet
and Neumann boundary conditions on the electric and the
magnetic walls, respectively. The origin of (10), (15), (16),
and (17) is discussed in Appendix A.

Note that the Green’s functions F", R;*, T;", and S;* can
be determined in closed form; therefore, for any EWG, g™

om =0 Fr=0 Rr=0
0V =0 8,57 =0 9,I=0

18)

and G™ are available in the form of one-index series. The
general expressions of the Green’s functions are reported
in Table II (the superscript m is omitted). The coefficients
@iy, b;5,+ -+ in the table depend on the layers ¢ and j where
the observation and the source points are placed. They are
determined enforcing the boundary conditions and the continu-
ity of F, €0y Fp, Ry, w10y Ry, Sp, €7 18,5, at the interfaces
between the layers. The table also includes the general expres-
sion of the eigenfunctions. The coefficients A, B A B}, that
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TABLE II
GENERAL FORMS OF THE GREEN’S FUNCTIONS AND THE EIGENFUNCTIONS THE LAYERS OF THE EWG ARE NUMBERED IN THE INCREASING ORDER FROM THE
BorToM; THE ¢TH LAYER HAS THE PERMITTIVITIES €, , /t; AND IT SPANS THE INTERVAL [, —1, ¥,|; THE OBSERVATION AND THE SOURCE POINTS. y AND ¢/ ARE
PLACED IN THE 2-TH AND IN THE JTH LAYER, RESPECTIVELY SYMBOLS. Yy =y — 41,9 =% — 4. ¥ =¥ —y,_1,¥7 =y, — ¢';65 =
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P9

depend on the layer, are determined enforcing the continuity
of Wpy, e 10y Vg, Bpg, 10y Py, between the layers, the
boundary conditions and the normalization (18). The resulting
equations also play the role of characteristic equations for the
determination of the resonant frequencies of the LSM and LSE
modes. With no more than three layers it is sufficiently easy to
find the analytical expressions of the characteristic equations
and of the coefficients involved in the Green’s functions and
in the eigenfunctions. These expressions are not reported for
brevity.

B. Representation of the Charge and Current Densities

The current density at each interface shall be approximated
using a finite set of basis functions. The choice of this set is
crucial to avoid spurious solutions.

We note that solenoidal currents (V. - J, = 0) would
generate in the EWG’s electric fields where the term VV is
missing (because p, = 0 and V' = 0). Then, looking at (2),
we realize at glance that such currents would generate in the
EWG’s an electric field going to zero for w — 0. This implies
that matching the electric field at the interfaces we obtain a
set of equations that, for w = 0, is satisfied identically by
any set of solenoidal currents. Evidently these solutions are
meaningless.

If the span of the chosen basis includes solenoidal currents,
we shall find as many meaningless solutions as the number
of independent solenoidal currents that our basis permits to
represent; these solutions, indeed, could be easily detected and
disregarded, they being marked by the zero eigenvalue. On the
other hand, if solenoidal currents are outside the span of the
basis, the said solutions would be found only approximately,
so that they will appear with nonzero eigenvalues, making their
detection difficult or impossible. Then, for avoiding spurious
solutions it is necessary to choose a basis whose span includes
solenoidal functions. Furthermore, as shown below, this choice
permits to formulate the final eigenvalue problem in such a
way as not to meet the zero eigenvalue at all.

In order to permit the representation of solenoidal
currents the functions 9y(J,), and —j3(J,), are approx-
imated in the same basis. Thus, considering K,, functions

bni,bnz, -, bnk, defined on the interface Y, and s_1}1ch that
their derivatives constitute a suitable basis for 9y(J,,), and
(Jn)z, we introduce the approximations
(T)a = [ 0T, dy
Kn
= Knino + Y _(Bink — jwnk)buk  (19)
k=1
K,
(Jn)e ==3 D inkbnk (20)
k=1

where i,; and ¢,x are unknown coefficients, x, is some
constant having the same dimensions of 8 and bnr = Oybni.
It is noted that, according to (1), we have

Kn
Pr =" Gnkbnk (21)
k=1

so that fn is solenoidal when the g-coefficients are zero.
Equations (19) and (20) can be rewritten as

K, K,
Jo = =jw ) GakGur + Y Brnink (22)
k=1 h=0

where we introduced the vector base functions

Tnk = bnkﬁy
U_jnh :ﬂbnhﬁy - jbnhﬁz (h 7£ O)

L,
Wro = Knlly.

Note that the w-functions are solenoidal.



BRESSAN et al.: ANALYSIS OF GUIDED MODES IN MULTILAYER/MULTICONDUCTOR STRUCTURES 663

C. The Eigenvalue Problem

Let £ and E be the electric fields on the left and the
right of the interface Y,,. Using the Galerkin method we match
their tangential components enforcing the conditions

E-)dy=0

/ @y (Ef —E;)dy=0
Yn

- K, h=0,1,--- K,.

Over the parts of the interface bordering on the left (right)
with EWG’s the field £ (EF) correspond to the field in
these EWGs; m the remalmng parts (if any) the tangential
components of E or E“L are zero, these parts bordering on
the lateral boundaries of conductors. Therefore the preceding

equations may be put into the form

Z5m / T(y) - E ™ (@, y) dy =0 (23)
I )

> /Y Top() - E™(@n,y) dy=0 (24
m=1 ™

where §7" # 0 only when the mth EWG borders on Y,,; more
specifically, 67" = —1 or 6" = 1 when the EWG is placed
on the left or on the right of Y,,, respectively. We have as
many equations of the type (23) as many functions ¥ we have
defined in all interfaces, i.e., K = ¥ K,,. The number of the
equations of the type (24) is H = K + N, since the number
of w-functions on each interface exceed by one that of the
v-functions.

Introducing (2) into (23) and (24) we obtain two systems
of algebraic equations involving all the unknown coefficients
Gnk, tnp, and all the mode amplitudes of the LSM and LSE
modes retained in the BI-RME representations of the EWG
fields. These systems, written in matrix form, are

Fq— juTi— wz(Sq V2 2a)
—jw[Ri — jw(Tq - W2 ?a)] =0

(25)
(26)

where: the vectors ¢ and 4 include in some order all the g- and
s-coefficients pertaining to all interfaces; the vector a includes
in some order the amplitudes of all the LSM and LSE modes
retained in the BI-RME representation of the EWG fields; {2
is the diagonal matrix including all the resonant frequencies,
in the same order as the mode amplitudes in a; the symbols
F R S, T,V,and W represent the matrices defined in Table
III and the tilde denotes the transpose. In deriving (26) we
used the identity

/ Wy (y) ’ Vszm(.’l:my) dy=0

that is valid because w is solenoidal and V is zero at the
extremes of Y™.

The matrix elements are reported in Table III, both in the
form that results directly from (23) and (24) and in terms
of the scalar basis functions. The second form—useful for
calculations—is obtained integrating by parts, with some ma-
nipulations involving (12)—(17). It is stressed that all matrices
are real and frequency independent and that ', R, and S are
square, symmetric, and positive definite (see Appendix B).

Another system of equations derives from (4), after mul-
tiplication by wgflz — w? and substitution of (22). In matrix
form we have

2%a + juWi+ w*(Vqg—a) = 0. 27N
Equations (25)~(27) are satisfied by any 1 if w = 0, = 0,a =
0. This is the class of meaningless solutions we discussed
in the previous subsection. The occurrence of these solutions
depends on the existence of the factor jw on the left-hand side
of (26). Omitting this factor the spurious solutions are cut off,
and the said equation permits to express the variable ¢ as a
function of the variables ¢ and a
Y(Tq - W2 a).

i=jwR™ (28)

Substituting into (25) and (27) we obtain the eigenvalue

equation
A C\(q) _ _ofF 0)\(q
@ 5)@E)=-0NE) o
where
A=S8S-TR'T (30)
B=0?2_-0*WR‘wn? 31
C=(TR'W-V)22 (32)

The eigenvalue equation is linear, because the matrices do not
depend on w. Note that this result has been obtained using as
variables g and a (i.e., the charge densities at the interfaces
and the modes of the EWG’s). Of course, should we eliminate
g or a, the resulting eigenvalue problem would be nonlinear.

The matrices in (29) are real symmetric and the one on
the right-hand side is evidently positive definite, due to the
positive definiteness of F. Also the matrix on the left-hand
side is positive definite, since it can be shown that, for any set
of equivalent sources (i.e., for any (g,a) # 0), we have

W (@ @& )(é g)( )z // pH - B* do dy>0

Cross
section

(33)

where H is given, for any EWG, by (3) (the demonstration is
omitted for brevity). Due to the properties of the matrices, the
eigenvalues are positive, so that the propagating frequencies
of the modes are real, in spite of the approximation of the
method.

We recall that the truncation of the RME in (2) and (3) is
performed in such a way as to assure a good accuracy of the
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TABLE III

MATRIX COEFFICIENTS THE INDEX ¢ DENOTES THE POSITION OF THE COEFFICIENT

g1 IN THE VECTOR g; THE INDEX ; DENOTES THE POSITION OF THE COEFFICIENT

2k IN THE VECTOR $; THE INDEX » DENOTES THE POSITION OF THE AMPLITUDE a’/” OR a!/”* IN THE VECTOR @. THEN THE ORDERING OF

THE VECTORS DEFINES THE FUNCTIONS. I = I(2).k = k(3),n = n
INDICES DENOTES I = I(2'),

Pq pq
(1).h=h{3),m =mi{r).p = p(r).q = q(r) THEPRIMEINTHE

), k' = lc(z ) AND SO0 ON. THE PRIME IN THE FUNCTIONS DENOTES THE DEPENDENCE ON THE VARIABLE y

M
. o
F,’ i = Z 6{"5{? // v *, 17,; _qm(:cl,y,wl,,y')Vy,zuﬁl’,k, dydy Z Z §m5l, p+l ;)n // buk F,:n byt dydyl
m=1 m=1 p=0 y™
M
— mem ew =m - 1y, oo mem p+l mam?2 b’kbmbl’k’
Si o = 6, I Uik G (~Thyy Yy ) Y dydy 6 5 ﬁ emetm d dy
m=1 y™ m=1 p=0
M m blkTmb’/ '
T,, = Z 5;"5;3/ T G @iy 2, ¥) 8L dydy! Z Z (TP o™, // — L dydy’
m=1 Y™ m=1 p=0 y™
M
-
RJJ' = Z 5771"5:3 / wr:h' G (l‘nvvanHy,) N u.;y’;’h/ dydy’ =
m=1 y™
M 1 2
S T Nt g KT (s smyptigm,m . .1
- Z n “nt nﬁ2n. nn' bnhu b . dy + Z n Yns ﬁ"l2 rp bnh R;n bn’h’ (lydy'
m=1 ym p=0 Y™
sm p+lpm g
S_‘__)_I_,;_ﬁ_’i_, /a;,"/ Ikmpq dy if 7 corresponds to a LSM mode
V,, = 6{"/ 0 - Epalzny) dy = “pq ym
Y 0 if 7 corresponds to a LSE mode
5m p+1
(63) ,;:"hﬂp \Jo / u bnh‘l’pq dy if 7 corresponds to a LSM mode
WJ,. = 8;"/ Doy (zn,y)dy +1 m
)y .
ym [3'" \YAd / bnh ‘qu dy if 7 corresponds to a LSE mode
where bno = 1, and ,
Beosech(BW™) ifn#n
- ywm =0 Kn Hh=0 o feot l(i?W"‘)) " ' (EWG™of the t Fig. 3a)
oM = Nph = = cotgh ifn=n of the type Fig. 3a
P ywm wmzo M\ ithgo o’ s ) . ,
Btgh(BW™) ifn=mn' (EWG™of the type Fig. 3b,c)

field representation up to the frequency wmax. Therefore, the
only meaningful eigenvalues are those larger than w2, .

The meaningful eigensolutions can be found using very
efficient and reliable algorithms [15]. These eigensolutions
yield the frequencies of all the modes that propagate below
wmax With the given phase constant (3, For each mode, i is
obtained from (28) and, together with ¢ and a, permits the
calculation of the modal field, using (21), (22), (5), (6), (2),
and (3). It is noted that the normalizing condition

¢Fq+aa=1 (34)
makes the modal magnetic field normalized to one, in the sense
of the energy. In fact, the left-hand side of (34) and (33) are
the same when (q,a) is en eigenvector of (29), so that the
integral in (33) is equal to one.

III. NOTES ON THE NUMERICAL CODE AND RESULTS

a) Choice of the basis functions: The functions b, are
first order (or triangular) splines. This choice results in a piece-
wise linear approximation of J, and in a piece-wise constant

approximation of J, and p. For simplicity, the singularities are
approximated considering narrow splines placed at the points
where the interfaces touch metallic or dielectric edges.
b) Calculation of w7, ;’(;”7 Wy Pyt The resonant fre-
quencies, that are the roots of the characterlstlc equations
discussed at the end of Section II-A, are determined by the
Newton method. The search of the roots is limited to the
range (7). The determination of the eigenfunctions, that are
represented in the form given in the Table II, reduces to the
calculation of some coefficients known analytically.

¢) Calculation of the matrix elements: This calculation
requires the evaluation of a very large number of integrals
(see Table III). This number is particularly large in the case
of the matrices F', R, T, and S, since any term of the p-series
involves a double integral. Fortunately, the form of the basis
functions, of the eigenfunctions and of the Green’s functions
is simple enough for permitting the analytical evaluation of
all integrals. Furthermore, most of the elementary integrals
involved in the calculation are the same in many matrices.
Therefore, evaluating all matrices in parallel the computation
becomes much less cumbersome than it appears. The p-
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Fig. 4. Dispersion curves of the lower modes of two coupled dielectric
waveguides. ‘

series are truncated when the relative correction due to
the addition of the last term becomes smaller than a fixed
amount A. In the cases of entries involving splines with
nonoverlapping supports (i.e., in most cases), the integrals
decrease exponentially with increasing p and the required
precision in. the evaluation of the series is reached after few
terms. A larger number of terms is required in cases of
overlapping splines, since in these cases the series converge
more slowly, like p~2.. :

d) Preliminary tests: A number of tests have been car-
ried out using as benchmarks the dispersion characteristics of:
i) the modes of a square waveguide, containing a homoge-
neous medium or a medium layered in the z- or y-direction
only; ii) the TEM mode of a shielded stripline. The degeneracy
of the modes of the square waveguide permitted us to verify
the nonexistence of problems in cases of degeneracies; the
stripline was considered to evidence possible problems caused
by the imperfect representation of singularities at edges. The
stability of the method has been tested by increasing the
number of basis functions and the value of the parameter
(i.e., the number of the modes retained in the RME’s) and
by decreasing the error parameter A. No false convergence
or spurious solution has been observed. These tests showed
that, in all cases, fixing ¢ = 25 and A = 0.1% was
sufficient for obtaining an accuracy better than 1%, using a
sufficient number of basis functions. Therefore these values
were included in the code as defaults. Finally, we repeated
many calculations subdividing the cross section into a number
of EWG’s larger than necessary, to see how much a large
number of interfaces affects the accuracy of the results. No
significant degradation was noted.

- "e) Results: We analyzed many structures considered in
the literature, in order to compare our results with those
obtained by other methods. In all cases the agreement was
good and, in most cases, excellent.

Fig. 4 shows the dispersion of the first eight modes of two
coupled dielectric waveguides surrounded by a conducting
_shield. The results for the first two modes are compared with
the FDTD results reported in [1]. We calculated even and odd
modes separately, placing a magnetic or electric wall at the
symmetry plane. We used a total of 16+ 16 splines in the two
interfaces; the total number of resonant modes in the three

B
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1 10 100
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Fig. 5. Dispersion curve of the fundamental mode of a microslab line.
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Fig. 6. Dispersion curves of the quasi-TEM modes of a multiconductor
transmission line (¢ = 5.75 mm,b = 2.5 mm,w = 0.25mm, and
metallization thickness = 0.25 mm). ‘

EWG’s was 27. Using a SUN Sparc10 workstation the CPU
time for each class of symmetry was 9 sec, for a single value
of (. This time is nearly the same as the CPU time required
to find just two modes by the FDTD. code [1], running on a
similar workstation. Nearly all the CPU time was expended
in the calculation of matrices F,R,S,T; in fact, the times
required by the various steps were )

computation of w7, wpe®, Ut O : 0.7%
computation of V, W: 0.3%
computation of F,R,S,T: 97%
solution of the eigenvalue problem: 1.6%
others: 0.4%

Fig. 5 shows the dispersion of the dominant mode of a
shielded microslab waveguide [16], compared with the MM
results reported in [8]. In this case we used 82 splines. The
number of resonant modes was 87; this large number was

‘a consequence of the large vertical size of the structure and

of the high value of the maximum frequency of interest.
Fig. 6 shows the dispersion of the quasi-TEM modes of
a complicated three-conductor transmission line. Using the
symmetry, 38 + 38 splines were used on the two interfaces.
The number of resonant modes was 26. Our results compare
very well with FEM results obtained by a commercial package
(2-D preprocessing of HFSS). With our method, however, the
computing time decreased dramatically (= 1/20).
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IV. CONCLUSION

Admittedly, the method uses rather cumbersome formulas
and, for this reason, its implementation in a computer code
is a rather demanding job. Anyway, the result is a flexible,
efficient, and reliable numerical tool, that compares favorably
with other codes for the analysis of complex waveguides. The
efficiency of the method depends not only on the reduced
number of variables but also on its distinguishing feature of de-
termining the propagating frequencies of the modes by solving
a linear eigenvalue problem. This feature also contributes to
the reliability of the method, especially in wideband analyses,
since no risk exists of missing some eigenvalues. Another
important reason for the reliability derives from the absence of
spurious solutions, that affect almost all numerical methods for
the solution of eigenvalue problems [17]. The zero-frequency
spurious solutions that affected the early version of the method
have been eliminated. The absence of other spurious selutions
has been ascertained experimentally.

APPENDIX
A. Derivation of (10), (15), (16), and (17)
As discussed in [12] we have

G™ = ap(a,y)E (Y ) Jwope
pq

(35)

where the series includes all the LSM and LSE modes.
Substituting (8) we obtain (10), where

o VW) VEe () o 5a (1) Ppe (v)
m rq pg mo__ bg yd'
SP - Z wima RP - Z wm2
g=1 pq g=1 rq

Introducing 7, = Zq.\lig(y)\lfgfl(y.’ ) wp? it is easily veri-
fied that these expressions are the eigenfunctions expansions

of the solutions of (15)-(17).

B. Positive Definiteness of R, S, and F

Let us consider the quadratic form U = 2 Ri. Considering
the first expression of R;; given in Table III and using (35),
we easily obtain

2
M H o om
U=> > Z%”éih/ Enn " oa gyl S0 Vi#o.
m=1 pq |j=1 ym  Wpg

Then R is positive definite. Along similar lines it can be shown
that ¢Sq >0 and §Fq> 0Vg # O (positive definiteness of S
and F'). For the demonstration we use the first expression of

S and F';; given in Table III, and represent g and Gin the
form of eigenfunction expansion.
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