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Analysis of Guided Modes in
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Marco Bressan, Member, IEEE, Giuseppe Conciauro, Member, IEEE, and Paolo Gamba, Member, IEEE

Abstract-This paper describes a new method for the analysis

of modes propagating in shielded waveguides consisting of many

dielectric and perfectly conducting layers of different widths.
The eigenvaiue problem inherent to the mode determination
is formulated subdlvidhg the structure into layered elemen-

tary wave-guides (EWG’S) and matching the fields generated

in adjacent EWG’S by unknown equivalent sources placed at
the interfaces. The special representation ‘of the EWG field,

consisting of boundary integrals and mode expansions, leads to

a linear matrix elgenvalue problem involving a limited number
of variables. Thanks to thk peculiarity the method permits to

determine many modes in short computing times. The method

was implemented in a flexible and fully automatic computer code,
whose reliability and efficiency has been confirmed by many tests.

I. INTRODUCTION

w ITH the development of integrated circuits operating at

microwave, millimeter-wave, and optical frequencies,

a great effort has been devoted to invent more and more

efficient algorithms for the full-wave analysis of multilay-

ered waveguides of ever-increasing complexity. A number of

waveguides of practical interest consist of many dielectric and

conducting layers of different widths enclosed in a rectangular

shield [Fig. 1(a)]. Therefore, a generai computer code for the

modal analysis of this class of structures can be very useful.

Reliability and efficiency in multimode analysis are required,

since many modes often propagate in the operating band of

complex waveguides.

Recently many two-dimensional (2-D) time-domain algo-

rithms have been developed for the dispersion analysis of

complex waveguides [1 ]–[7]. These algorithms loose their

efficiency in multimode analysis, due to the necessity of

considering a very large number of time steps to resolve, in

the frequency domain, modes propagating at close frequencies

with the same phase constant.

Other algorithms, based on the mode-matching, the trans-

verse resonance or the boundary integral method have been

used extensively for studying particular structures belonging

to the considered class and, recently, for implementing some
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Fig. 1. (a) Cross section of a multilayer/multiconductor waveguide. (b)

Subdivision of the cross section into rectangular regions containing an
z-invariant medirm.

general purpose codes [8]–[1 1]. In these methods the disper-

sion analysis requires to recalculate many and many times the

system matrix in order to locate the zeros of its determinant in

the w-~ plane. In multimode analysis this makes these methods

time-consuming and unsuitable for automatization, since some

human control is necessary to be sure not to miss some modes.

In two recent conference papers [12], [13] we gave a

rough description of a novel method that leads to the mode

determination by the solution of a linear matrix eigenvalue

problem involving a reasonably small number of variables.

This permits a dramatic saving in computing time and removes

the risk of missing modes. The present paper is intended to

describe the method in the necessary detail, including some

improvements which avoid the spurious solutions that, in the

early version, were found at (nominally) zero frequency [12].

Here the method is named “boundary integral-resonant mode

expansion (BI-RME) method,” due to the particular form of

the field representation.

In Section II, we describe the theory and report the formulas

that are strictly necessary for a clear understanding of the

method; in Section III we give some inforrnations on the

numerical implementation and report some result in Section

IV we discuss the advantages of the method.

II. THEORY

We consider lossless isotropic waveguides [Fig. l(a)]

bounded by electric walls and, possibly, by one magnetic

wail on one side (considering the magnetic wail is useful

for studying symmetric structures). We restrict our analysis
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Fig.2. Subdivision of the structure into EWGS excited by the equivntent
current sheets defined over the interfaces.

to propagating (noncomplex) modes, i.e., to fields depending

on the factor exp j(wt – ,LIz), with @>0. As usual in modal

analysis this factor is understood and the field is studied in

two dimensions. For any given value of’ /3 we determine

the frequencies and the fields for all modes propagating

below some frequency w~aX. Then, in the eigenvalue problem

inherent to the mode determination, the frequency w plays the

role of the eigenvalue and the modes are determined as 2-D

resonant modes depending on the parameter O.

As shown in Fig. 1(b), the cross section consists of a number

of interconnected rectangular regions, each containing a x-

invariant dielectric and bounded by electric walls on the top,

on the bottom and, possibly, on one side. As shown in Fig. 2

we isolate these regions introducing a set of fictitious magnetic

walls, thus subdividing the waveguide into elementary wave-

guides (EWG’ s), numbered from one to M. Furthermore,

according to the equivalence theorem, we introduce on the

fictitious magnetic walls some traveling-wave current sheets

propagating in the z-direction with the phase constant ~, in

such a way as to generate, in all the EWG’s, fields propagating

with the same phase constant as the modes we want to

determine. As shown in the figure, the currents densities on

adjacent magnetic walls are opposite, in order to assure the

continuity of the tangential component of the magnetic field

in adjacent EWG’s.

The union of all the fictitious magnetic walls consists

of N separate segments Y1, Yz, 0... YN (see Fig. 2). These

segments, named “interfaces,” consist of points placed on

magnetic walls of adjacent EWG’s and, possibly, on lateral

boundaries of conductors. The curren~on the lefJ and the right

of the interface Y2 are den+oted by Jn and – Jn respectively

(note that only Jn or – Jm is present where the interface

touches a conductor). In any case, one function & = &(y),

defined over Ym, is sufficient to describe all the equivalent

currents on the left and/or on the right of the interface, so that

the set of functions ~1, 72, . . . . &, completely describes all

the equivalent currents in the EWG’s.

The EWG’s are bounded at the top and the bottom by

electric walls and, laterally, by a pair of magnetic walls

or by an electric and a magnetic wall. They all include

a dielectric medium layered in the y-direction only. Then,

the EWG’S are simple enough for representing analytically

the field generated by the equivalent currents. The form of

the eigenvalue problem, that is formulated by enforcing the

continuity of tangential electric field at the interfaces, depends

on the way we represent the EWG field. The boundary integral-

resonant mode expansion (BI-RME) representation discussed

below leads to a linear eigenvalue problem.

A. BI-RME Representation of the EWG Field

Let us consider the mth EWG and assume that it is included

within two interfaces—say Y. on the left and Ynt on the

right—placed at the abscissas Zn and zn~ [Fig. 3(a)]. Let us

denote by em and pm the electric and magnetic permittivities

of the medium, that are piecewise-constant function of y,

defined in the interval Ym spanned by the EWG. Finally, let

us introduce the surface charge densities pn and pm, associated

to Jn and J~, These densities are given by

Vyz in
pn=– (v,, =f iivtlv – jpiiz). (1)

jw

The field in the EWG can be represented as follows [12]:

where V = ilZtlZ + i&~Y – j(3Gz; Vm and ~m are the quasi-

static scalar and vector potentials; w~~, ZP~ and w~qm,~~~

are the frequencies and the electric fields for the LSMPq

and LSEPq modes of the EWG, propagating with the phase

constant /3; a~~ and a~~ are the mode amplitudes. Assuming

the normalization J J CZ. P dx dy = 1, the amplitudes of

both types of modes satisfy the equation

The potentials are represented by the boundary integrals

JVm(x, y) = Ym 9m(~, Y, Xn/, y’)/h(/) dy’

—
/

9m(x, Y, G> Y’)%(Y’) dv’ (5)
Y“

/
i’m(x,g) = &( Z,y,Zn,,/) . jnr(y’)dy’

ym

—
/

&(Z, y, Xn, /) . @J’) dy’ (6)
Y“

where gm and Gm are the Green’s functions for the quasi-

static scalar and vector potentials in the EWG. Equations (2)

and (3) hold true also when the EWG borders on one interface
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Fig. 3. Possible EWG lateral boundaries. (a) Magnetic-magnetic walls. b)
and (c) Magnetic-electric watl.

where

M; = iizV;# (X)ay + W(X)(Z,PT2 - jdzpa,)only [Fig. 3(b) and (c)] but, in this case, one of the integrals

in (4)–(6) is missing. NT= &/3x~(x) + jdzvyfy(~). (11)

The series in (2) and (3) involve the modes of the EWG

considered with the same phase constant, at different propa-

gating frequencies. In other words, these modes are considered

as transversely resonant modes, their propagating frequencies

having the meaning of resonant frequencies. In this sense

these series represent “resonant mode expansions.” We see

that (2) and (3) constitute a hybrid representation consisting

of boundary integrals (BI) and of resonant mode expansions

(RME). The quasi-static boundary integrals permit an accurate

representation of the field near the interfaces, where the field

varies rapidly due to the discontinuity of the medium and

to the presence of metallic and/or dielectric edges [14]; in

fact the discontinuities and the singularities of the field obey

the same laws in the quasi-static and in the high-frequency

case, so that the rapid variations of the field can be accurately

reproduced provided the currents on the interface are allowed

to vary rapidly, The resonant mode expansions represent a

much smoother field, because the contributions of the highest

order modes become rapidly unimportant (asymptotically,

they depend on the factor (oJfi)”). Then, the RME can

be truncated, retaining a limited number of the lowest order

modes, say those satisfying

with < not much larger than one (in Section III we shall see

that considering <>2.5 is sufficient). Note that the number of

retained modes is small if the dimensions of the EWG are not

much larger than the wavelength at the frequency (wrn~~.

The modal electric fields and tie Green’s functions have

the form

The symbols v~, ,B~, && (x), x~($) are defined in Table I;

M;’” and ~~’” represent the conjugate of M? and Npm
with z, y replaced by x’, y’. The other functions in (8)–(10)

result from the solution of the following equations:

0;=0 F~=() R;=O

}

at the extremes

ay$g = o ays; = o ayTpm = o of Ym

/
“dy=lPm @pq

/
#ZP;q2 dy = 1. (18)

Ym Y“

The equations (12) and (13), where w~~ and w~~ play the

role of eigenvalues, result from the study of the LSM and LSE

modes by the method of variable separation. For any value of

p, the index q labels the eigensolutions in the nondecreasing

order of the eigenvalues. Equation (14) derives from the

solution of V. cVg = –-4(x – x’)6(Y – y’) with the Dirichelet

and Neumann boundary conditions on the electric and the

magnetic walls, respectively. The origin of (10), (15), (16),

and (17) is discussed in Appendix A.

Note that the Green’s functions Fpm, R~, Tpm, and S~ can

be determined in closed form; therefore, for any EWG, gm
*

(8)
and Grn are available in the form of one-index series. The

general expressions of the Green’s functions are reported

in Table II (the superscript m is omitted). The coefficients

gm= ~t~(X)&YX’)F’(Y, Y’) (9) aij,bi j,””” in the table depend on the layers z and j where

p=(l the observation and the source points are placed. They are

m J4FMF’*S~(Y, Y’) + NPN~’*RF(Y, Y’)
determined enforcing the boundary conditions and the continu-

&l .
x(

)

ity of Fp, tay Fp, Rp, p ‘laYRP, Sp, ~–lagsp at the interfaces
py%~(y)tm(y’) P~2p=o between the layers. The table also includes the general expres-

(10) sion of the eigenfunctions. The coefficients Al B; A! l?:, that
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TABLE II
GENERAL FORMSOF THE GREEN’s FUNCTIONSAND THE EIGENFUNCTIONS THE LAYERS OF THE EWG AM NUMBERED IN THE INCREASING ORDER FROM THE

BOTTOM; THE ZTH LAYER HAS THE I?ERMITTIVITIESe,, p, AND IT SPANSTHE INTERVAL [y, – 1, y, ]; THE OBSERVATIONAND THE SOURCEPonws, y AND y’ Am
PLACED IN THE t.m AND IN THE ITH LAYER, RESPECTIVELY SYMBOLS, ~ = y – yz_l, V = y, – y, ~’ = y’ – gJ –1, ~’ = Uj – g’; &j =

KRONECKER INDEX, a,J, btl, CEJ,dtJ, f,J, g,], T,>, S,l. t],t A;, B;, Al’, B:’ = COEFHCIENTS TO BE DETERMINED

~-i3plv-Y’l
Fp = 6,3 -~ + atJe

–/3m(y+y’) + /,, Je–flr(y+T’) + @-@P(T+l’) + ~,je-%(v+r’)

R,= 6,, ~ + d,je-@P(4+Y’) + j,je-@P(Y+~’) + fj,e-%(~+z’) + ,,J,-PP(U+U’)

~ ~–8pllJ-Y’l

(
Tp = &J~ –ctc1 a,je

–/3p(y+y’) _ ~tjc–/3p(y+7) _ 6j, e-@P(17+!J)+ ~,je-Pp(v+Y’)
)

Sp = 6,, E:/1,2(1 + (3Ply – 9’1)e–PplY- Y’1–e-PP(2+2’) –e-flP@+~’)

8P; [(+$ 7’ij– %j&(W,~ + c#j~’)) e-pp(~+~’)+

(s,j + btjop(~i~~t~+ CJPJT’)) e ‘PP(I+J’) + (Sj, + bj, f?p(c, L,,~ + cJj@) e-pp(r+~’) + (t,j – ~tjfip(~t AT + CjPj17’)) e-ppty+z’) 1
(“i= J-=’zo

depend on the layer, are determined enforcing the continuity

of VPQ, c–119VIPP~,@P~,p–18Y@P~ between the layers, the

boundary conditions and the normalization (18). The resulting

equations also play the role of characteristic equations for the

determination of the resonant frequencies of the LSM and LSE

modes. With no more than three layers it is sufficiently easy to

find the analytical expressions of the characteristic equations

and of the coefficients involved in the Green’s functions and

in the eigenfunctions. These expressions are not reported for

brevity.

B. Representation of the Charge and Current Densities

The current density at each interface shall be approximated

using a finite set of basis functions. The choice of this set is

crucial to avoid spurious solutions.

We note that solenoidal currents (VYZ . ~n = O) would

generate in the EWG’s electric fields where the term VV is

missing (because pn = O and V = O). Then, looking at (2),

we realize at glance that such currents would generate in the

EWG’S an electric field going to zero for w ~ O. This implies

that matching the electric field at the interfaces we obtain a

set of equations that, for w = O, is satisfied identically by

any set of solenoidal currents. Evidently these solutions are

meaningless.

If the span of the chosen basis includes solenoidal currents,

we shall find as many meaningless solutions as the number

of independent solenoidal currents that our basis permits to

represent; these solutions, indeed, could be easily detected and

disregarded, they being marked by the zero eigenvalue. On the

other hand, if solenoidal currents are outside the span of the

basis, the said solutions would be found only approximately,

so that they will appear with nonzero eigenvalues, making their

detection difficult or impossible. Then, for avoiding spurious

solutions it is necessary to choose a basis whose span includes

solenoidal functions. Furthermore, as shown below, this choice

permits to formulate the final eigenvalue problem in such a

way as not to meet the zero eigenvalue at all.

In order to permit the representation of solenoidal

currents the functions t3Y( Jn )Y and –j~( J. ). are approx-

imated in the same basis. Thus, considering Km functions

bnl, bn2, . . .. bnKn defined on the interface Y. and such that

their derivatives constitute a suitable basis for i3V(~n)y and

(~n)., we introduce the approximations

=Knino + fj?in,-jqn,)h (19)

/%=1
n

(~n)z= –j ~ imkb.k (20)

k=l

where ink and q.k are unknown coefficients, & is some

constant having the same dimensions of B and bnk = 8Ybnk.

It is noted that, according to (l), we have

K.

Pn = ~ q.kbnk (21)

k=l

so that Jn is solenoidal when the q-coefficients are zero.

Equations (19) and (20) can be rewritten as

K. K.

where we introduced the vector base functions

Note that the w-functions are solenoidal.
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C. The Eigerwalue Problem

Let fl~ and l?: be the electric fields on the left and the

right of the interface Yn. Using the Galerkin method we match

their tangential components enforcing the conditions

/
ti:h . (fi; –~;) dy = O

Y.

k=l,2,... ,Kn h=o,l,..., Kn.

Over the parts of the inJerfac~ bordering on the left (right)

with EWGs the field E; (EJ ) correspond to the field in

these EWGS; in-the remaining parts (if any) the tangential

components of E; or E; are zero, these parts bordering on

the lateral boundaries of conductors. Therefore the preceding

equations may be put into the form

where S: # O only when the mth EWG borders on Y~; more

specifically, 6: = – 1 or by = 1 when the EWG is placed

on the left or on the right of Y~, respectively. We have as

many equations of the type (23) as many functions U we have

defined in all interfaces, i.e., K = X K.. The number of the

equations of the type (24) is H = K + N, since the number

of w-functions on each interface exceed by one that of the

v-functions.

Introducing (2) into (23) and (24) we obtain two systems

of algebraic equations involving all the unknown coefficients

%k, i~h and all the mode amplitudes of the LSM and LSE
modes retained in the BI-RME representations of the EWG

fields. These systems, written in matrix form, are

Fq – jwTi – w2(Sq – Vf2-2a) = O (25)

–jw[Ri – jw(~q – Wfi-2a)] = O (26)

where: the vectors q and i include in some order all the q- and

i-coefficients pertaining to all interfaces; the vector a includes

in some order the amplitudes of all the LSM and LSE modes

retained in the BI-RME representation of the EWG fields; L?

is the diagonal matrix including all the resonant frequencies,

in the same order as the mode amplitudes in a; the symbols

F, R, S, T, V, and W represent the matrices defined in Table

III and the tilde denotes the transpose. In deriving (26) we

used the identity

/
~;hl (y) oVgZVm(G, y) dy = O

Y~

that is valid because Z is solenoidal and V is zero at the

extremes of Ym.

The matrix elements are reported in Table III, both in the

form that results directly from (23) and (24) and in terms

of the scalar basis functions. The second form-useful for

calculations—is obtained integrating by parts, with some ma-

nipulations involving ( 12)–(17). It is stressed that all matrices

are real and frequency independent and that F, R, and S are

square, symmetric, and positive definite (see Appendix B).

Another system of equations derives from (4), after mul-

tiplication by w~~z – w 2 and substitution of (22). In matrix

form we have

f22a +jwWi + w2(Vq – a) = O. (27)

Equations (25)–(27) are satisfied by any i if w = O,q = O,a =

O. This is the class of meaningless solutions we discussed

in the previous subsection. The occurrence of these solutions

depends on the existence of the factor jw on the left-hand side

of (26). Omitting this factor the spurious solutions are cut off,

and the said equation permits to express the variable i as a

function of the variables q and a

~ = fjwR-l(~q – Wf2-2a). (28)

Substituting into (25) and (27) we obtain the eigenvalue

equation

($W)=W-260(0 ‘2’)
where

A= S–TR-lT (30)

B = 0-2 _ fi-2wR-1~~-2 (31)

C = (TR-lJV – V) f2-2. (32)

The eigenvalue equation is linear, because the matrices do not

depend on w. Note that this result has been obtained using as

variables q and a (i.e., the charge densities at the interfaces

and the modes of the EWG’ s). Of course, should we eliminate

q or a, the resulting eigenvalue problem would be nonlinear.

The matrices in (29) are real symmetric and the one on

the right-hand side is evidently positive definite, due to the

positive definiteness of F. Also the matrix on the left-hand

side is positive definite, since it can be shown that, for any set

of equivalent sources (i.e., for any (q, a) # O), we have

W2@ ii)~ ;)(:)= ///.&ti*dxdg>O

troy
section

(33)

where ~ is given, for any EWG, by (3) (the demonstration is
omitted for brevity). Due to the properties of the matrices, the

eigenvalues are positive, so that the propagating frequencies

of the modes are real, in spite of the approximation of the

method.

We recall that the truncation of the RME in (2) and (3) is

performed in such a way as to assure a good accuracy of the
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TABLE III
MATRIX COEFFICIENTSTHE INDEX ? DENOTES THE POSITION OF THE COEFFICIENTqi k IN THE VECTOR q THE INDEX J DENOTES THE POSITION OF THE COEFFICIENT

a. h IN THE VECTOR i; THE INDEX r DENOTES THE POSITION OF THE AMPLITUDE aj~ OR a[~ IN THE VECTOR a. THEN THE ORDERING OF

THE VECTORS DEFINES THE FUNCTIONS,1 = l(L), Ic = !-c(z), n = n(~), h = lL(J), WZ= m(r). p = p(r). q = q(r) THE PRIME IN THE
INDICES DENOTES 1’ = l(t’ ), k’ = k(?’ ) AND So ON, THE PRIME IN THE FUNCTIONS DENOTESTHE DEPENDENCEON THE VARIABLE y’

JJyrn /

if r corresponds to a LSM mode

if r corresponds to a LSE mode

if r corresponds to a LSM mode

if r corresponds to a LSE mode

where bno = 1, and:

{

l/w~ u; = o

{
{

flcosech(fi W’n ) if n # n’

~m =
tin

P

ifh=O
?)nh = K;,;, , =

2fwm
@Otgll(~Wm) if n = n’ (EWG’nof the type Fig. 3a)

V~#o {3 ifh#O
/3tgh(g?w~’) if n = 7L1 (EWG’nof the type Fig. 3b,c)

field representation up to the frequency u~... Therefore, the

only meaningful eigenvalues are those larger than w~~X.

The meaningful eigensolutions can be found using very

efficient and reliable algorithms [15]. These eigensolutions

yield the frequencies of all the modes that propagate below

Wmax with the given phase ccmskint D. For each mode, i is

obtained from (28) and, together with q and a, permits the

calculation of the modal field, using (2!1), (2!2), (5), (6), (2),

and (3). It is noted that the normalizing condition

qFq+iia=l (34)

makes the modal magnetic field normalized to one, in the sense

of the energy. In fact, the left-hand side of (34) and (33) are

the same when (q, a) is en eigenvector of (29), so that the

integral in (33) is equal to one.

III. NOTES ON THE NUMERICAL CODE AND RESULTS

a) Choice of the basis functions: The functions bnk are

first order (or triangular) splines. This choice results in a piece-

wise linear approximation of JY and in a piece-wise constant

approximation of J. and p. For simplicity, the singularities are

approximated considering narrow splines placed at the points

where the interfaces touch metallic or dielectric edges.

b) Calculation of w~~, w~~, UjJ&, O;: The resonant fre-

quencies, that are the roots of the characteristic equations

discussed at the end of Section II-A, are determined by the

Newton method. The search of the roots is limited to the

range (7). The determination of the eigenfunctions, that are

represented in the form given in the Table II, reduces to the
calculation of some coefficients known analytically.

c) Calculation of the matrix elements: This calculation

requires the evaluation of a very large number of integrals

(see Table III). This number is particularly large in the case
of the matrices F, R, T, and S, since any term of the p-series

involves a double integral. Fortunately, the form of the basis

functions, of the eigenfunctions and of the Green’s functions

is simple enough for permitting the analytical evaluation of

all integrals. Furthermore, most of the elementary integrals

involved in the calculation are the same in many matrices.

Therefore, evaluating all matrices in parallel the computation

becomes much less cumbersome than it appears. The p-
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Fig. 4. Dispersion curves of the lower modes of two coupled dielectric

waveguides.

series are truncated when the relative correction due to

the addition of the last term becomes smaller than a fixed

amount A. In the cases of entries involving splines with

nonoverlapping supports (i.e., in most cases), the integrals

decrease exponentially with increasing p and the required

precision in the evaluation of the series is reached after few

terms. A larger number of terms is required in cases of

overlapping splines, since in these cases the series converge

more slowly, like p–2.

d) Preliminary tests: A number of tests have been car-

ried out using as benchmarks the dispersion characteristics ofi

i) the modes of a square waveguide, containing a homoge-

neous medium or a medium layered in the z- or ~-direction

only; ii) the TEM mode of a shielded stripline. The degeneracy

of the modes of the square waveguide permitted us to verify

the nonexistence of problems in cases of degeneracies; the

stripline was considered to evidence possible problems caused

by the imperfect representation of singularities at edges. The

stability of the method has been tested by increasing the

number of basis functions and the value of the parameter <

(i.e., the number of the modes retained in the RME’s) and

by decreasing the error parameter A. No false convergence

or spurious solution has been observed. These tests showed

that, in all cases, fixing ~ = 2.5 and A = O.1~0 was

sufficient for obtaining an accuracy better than 1%, using a

sufficient number of basis functions. Therefore these values

were included in the code as defaults. Finally, we repeated

many calculations subdividing the cross section into a number

of EWG’s larger than necessary, to see how much a large

number of interfaces affects the accuracy of the results. No

significant degradation was noted.

e) Results: We analyzed many structures considered in

the literature, in order to compare our results with those

obtained by other methods. In all cases the agreement was

good and, in most cases, excellent.

Fig. 4 shows the dispersion of the first eight modes of two

coupled dielectric waveguides surrounded by a conducting

shield. The results for the first two modes are compared with

the FDTD results reported in [1]. We calculated even and odd

modes separately, placing a magnetic or electric wall at the

symmetry plane. We used a total of 16+ 16 splipes in the two

interfaces; the total number of resonant modes in the three

*12 mm-
,~
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Fig. 5. Dispersion curve of the fundamental mode of a microslab line.
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Fig. 6. Dispersion curves of the quasi-TEM modes of a multicouductor

transmission line (a = 5.75 mm, b = 2.5 mm, w = 0.25 mm, and
metallization thickness = 0.25 mm).

EWG’S was 27. Using a SUN Sparc10 workstation the CPU

time for each class of symmetry was 9 see, for a single value

of ~. This time is nearly the same as the CPU time required

to find just two modes by the FDTD code [1], running on a

similar workstation. Nearly all the CPU time was expended

in the calculation of matrices F’, l?, S, fi in fact, the times

required by the various steps were

computation of w~~, w~qrn, Vyq, @~q: 0.7%

computation of V, W: 0.3%

computation of F, R, S, T: 97%

solution of the eigenvalue problem: 1.6%

others: 0.4%

Fig. 5 shows the dispersion of the dominant mode of a

shielded rnicroslab waveguide [16], compared with the MM

results reported in [8]. In this case we used 82 splines. The

number of resonant modes was 87; this large number was

a consequence of the large vertical size of the structure and

of the high value of the maximum frequency of interest.

Fig. 6 shows the dispersion of the quasi-TEM modes of

a complicated three-conductor transmission line. Using the

symmetry, 38 + 38 splines were used on the two interfaces.

The number of resonant modes was 26. Our results compare

very well with FEM results obtained by a commercial package

(2-D preprocessing of HFSS). With our method, however, the

computing time decreased dramatically (x 1/20).
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IV. CONCLUSION

Admittedly, the method uses rather cumbersome formulas

and, for this reason, its implementation in a computer code

is a rather demanding job. Anyway, the result is a flexible,

efficient, andreliable numerical tool, that compares favorably

with other codes for the analysis of complex waveguides. The

efficiency of the method depends not only on the reduced

number of variables but also on its distinguishing feature of de-

termining the propagating frequencies of the modes by solving

a linear eigenvalue problem. This feature also contributes to

the reliability of the method, especially in wideband analyses,

since no risk exists of missing some eigenvalues. Another

important reason for the reliability derives from the absence of

spurious solutions, that affect almost all numerical methods for

the solution of eigenvalue problems [17]. The zero-frequency

spurious solutions that affected the early version of the method

have been eliminated. The absence of other spurious solutions

has been ascertained experimentally.

APPENDIX

A. Derivation of (10), (15), (16), and (17)

As discussed in [12] we have

where the series includes all the LSM and LSE modes.

Substituting (8) we obtain (10), where

Introducing TPm = Xq Qfl(y)Vfi(y’)/k&2 it is easily veri-

fied that these expressions are the eigenfunctions expansions

of the solutions of (15)–(17).

B. Positive Definiteness of R, S, and F

Let us consider the quadratic form U = ; Rz. considering

the first expression of Rjj given in Table III and using (35),

we easily obtain

Then R is positive definite. Along similar lines it can be shown

that qSq >0 and qFq > O’dq # O (positive definiteness of S

and F). For the demonstration we use the first expression of

Sii and FiiI given in Table III, and represent g and Gin the

form of eigenfunction expansion.
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